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This paper presents a Multiple Target Tracking (MTT) Adaptive Cruise Control (ACC)
system which consists of three parts; a multi-model-based multi-target state estimator, a

primary vehicular target determination algorithm, and a single-target adaptive cruise control

algorithm. Three motion models, which are validated using simulated and experimental data, are

adopted to distinguish large lateral motions from longitudinally excited motions. The improve-

ment in the state estimation performance when using three models is verified in target tracking

simulations. However, the performance and safety benefits of a multi-model-based MTT-ACC
system is investigated via simulations using real driving radar sensor data. The MTT-ACC
system is tested under lane changing situations to examine how much the system performance

is improved when multiple models are incorporated. Simulation results show system response

that is more realistic and reflective of actual human driving behavior.
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Z1 . Longitudinal distance of Cartesian coor-
dinate
Z2 . Lateral distance of Cartesian coordinate

7;[ k| k—1] : Predicted measurement

o . Rejection the correct radar return

1 . Probability that the correct return will
not be detected

I} . Input distribution matrix

0 : Angle of polar coordinate

Or . Longitudinal Standard deviation of mea-
surement error in polar coordinate

0o . Lateral Standard deviation of measure-
ment error in polar coordinate

w:[k—1] : Updated mode probability

Vg . Markovian transition probability

x:[£] . Event ; ith validated measurement
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1. Introduction

In recent years, Advanced Vehicle Safety Sys-
tems (AVSS) have been an interesting and active
research topic. Adaptive Cruise Control (ACC)
(Shladover et al., 1991 ; Hedrick et al., 1994
Peng, 1998 ; Venhovens, 2000; Yi et al., 2001 ;
2002) systems, one field of AVSS, have goals that
include the partial automation of longitudinal
vehicle control and the reduction of the driver’s
workload. First generation ACC systems have
been commercialized by many major automotive
manufacturers. In practical driving situations, al-
though there are several vehicles in front of the
subject vehicle, each driver is following just one
car, the target vehicle, which is in the same lane
or is cutting-in from a neighboring lane. The
driver’s decision of which vehicle is the target
vehicle is a complicated one, but established ACC
algorithms use simple schemes which declare the
target vehicle as the closest one currently in my
lane. One goal of this paper is to present a more
intelligent decision process which incorporates
the tracking of multiple preceding vehicles simul-
taneously.

A sensor for preceding object detection is the
most important component to an ACC system
because it directly influences the performance
of the system. Milli-meter Wave (mmW) radar
(Tokoro, 1996) is a preferred technology because
the influence of environmental conditions, like
rain and fog, is smaller than that of other ranging
technologies like ultra-sonar, laser, and vision.
With the measurements available from a ranging
sensor, the Kalman filter is the preferred state
estimator in a target tracking algorithm. How-
ever, its single model dynamics cannot accurately
describe all possible target motions. The Interac-
ting Multiple Model (IMM), which was intro-
duced by Blom (Blom et al., 1984) and further
developed by Bar-Shalom (Bar-Shalom, 1978 ;
Bar-Shalom and Fortmann, 1988) has a finite
number of Kalman filters that each describe the
characteristics of a particular target motion. With
this finite bank of filters, it is desired that at all
times, there will be one model that accurately

reflects the current motion of the target.

Unfortunately, ranging sensors are rarely oper-
ated in environments devoid of false detections
or clutter. In recent decades, several algorithms
were developed for tracking a moving target in
such clutter and the Probabilistic Data Associa-
tion Filter (PDAF) introduced by Bar-Shalom
and Tse (1975) showed superior performance.
Bar-Shalom (Li and Bar-Shalom, 1993) com-
bined these two algorithms, the IMM and the
PDAF, into a practical aerospace target tracking
routine because of their common use of probabil-
ity theory and their complementary nature in
terms of common variables. Caveney (Caveney
and Hedrick, 2002) contributed to the evaluation
of Bar-Shalom’s IMM-PDAF algorithm as an
automotive target tracking routine via vehicle
tests. However, previous IMM-PDATF research in
vehicular applications has been based on two
motion models ; one is a uniform motion model
where acceleration variation is small and the
other is a maneuvering motion model where ac-
celeration variation can be large.

In this paper, we present three motion models
that separate lateral movement from longitudinal
motion in previous maneuvering motion models.
This allows lane changes to be distinguished from
braking maneuvers. The probability of a lane
change motion model is used as an additional
input to the controller which determines which
track is the target vehicle. We apply the IMM-
PDAF tracking routine, based on these three
motion models (uniform motion, lane change,
and braking), to an ACC simulation model and
verify our adaptive controller under several criti-
cal driving situations. In particular, the MTT-
ACC system is tested under severe braking situa-
tions and lane changing situations to examine
how much the system performance is improved
when multiple models are incorporated.

2. MTT-ACC Simulation Model

This section describes both the motion models
of the IMM algorithm as a target state estimator
and the primary target determination algorithm
for the MTT-ACC simulation. The equations of
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the IMM-PDAF routine are shown in the Ap-
pendix. The ACC system model in (Yi et al.,
2001 ; 2002) is used in the closed-loop simula-
tions of the MTT-ACC system. It and others are
assumed to be known well enough that their
equations are not repeated in this paper.

2.1 The three dynamic motion models
The motions of target vehicles are described by
the following discrete-time, state-space models,

x[k]=Fx[k—1]+Tw[k—1]

=[x x y]” n

where x[%] is a state vector in the horizontal
Cartesian plane, x is the target’s relative longitu-
dinal position, x is the relative longitudinal ve-
locity, y is the relative lateral position, and w[ %]
is white process noise assumed to be Gaussian
distributed with zero mean and known covari-
ance, Q[£]. All three discrete-time, state-space
models have the following transition matrix, F,
and the input distribution matrix, I,

1TO0 TO
F=|o10|,'=|10 (2)
00 1 01

where T is the sampling time, taken as 0.05 sec
in this paper.

Because the process noise term of second or-
der dynamic motion model is speed variation
and that of third order dynamic motion model is
acceleration variation, the probability of lane-
change motion cannot sufficiently excited while
a preceding vehicle has a constant lateral velo-
city. Therefore, 2°! order longitudinal dynamics
and 1%
study.

The measurement model described in Equation

order lateral dynamics are chosen in this

(3) shows that only the longitudinal and lateral
relative positions of each target are measured,
although mmW radar can also transmit relative
speeds of preceding vehicles.

z[k]=Hx[k]+v[k] (3)

100
H:[o 0 1} “@

where v[%] is also a white, Gaussian, noise
sequence with zero-mean and associated covari-
ance, R[%].

All motion models use Equations (1)-(4), and
only differ in their chosen process noise covari-
ance matrices, Q[ £], which reflect different per-
turbations of longitudinal vehicle speed and lat-
eral vehicle position.

O‘%x 0

wrlE e

where 0.« is the deviation of the vehicle’s longi-
tudinal speed and 0wy is the deviation of the
vehicle’s lateral position.

As mentioned earlier, for the vehicular appli-
cation, we focus on early detection of and dis-
tinction between lateral motions and rapid dec-
elerations. Past work has used only two motion
models to detect any form of maneuver, namely,
uniform motion and maneuvering motion. How-
ever, lateral deviations should be distinguished
from longitudinally excited motions in the ma-
neuvering motion model. Especially this knowl-
edge will be used in the primary target determi-
nation algorithm. Thus, in this paper, we present
three motion models which will be validated
using simulated and experimental data in Section
2.2.

Our motion models are : uniform motion (Mo-
del 1) with (g,x=1.1X10"%[m/s], owy=1Xx107
[m]), lane-changing motion (Model 2) with
(0ux=1.23X10"3[m/s], 0wy=9.8 X107*[m]) and
acceleration/deceleration motion (Model 3) with
(0ux=1.0X10""[m/s], Gwy=1.20X10"[m]). Al-
though Model 3 represents both acceleration and
deceleration motions, we will focus on its ability
to model braking maneuvers and, therefore, refer
to it as the braking motion model.

2.2 Validation of the three dynamic motion
model set-up
In order to validate the proposed motion model
set, we look at several simulations. Figure 1 de-
picts simulation results when the preceding vehi-
cle and the subject vehicle have the same longi-
tudinal speed. In this case, the uniform motion
model should be the dominant motion model, as
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measured by the model probabilities, because
there is no relative acceleration between the two
vehicles. In Figure 1(a), the estimated values
track exactly the actual target’s position at a
longitudinal distance of 120 m and a lateral dis-
tance of 8 m. Figure 1(b) shows that uniform
motion becomes the dominant motion among
the three motions, but the converged probability,
0.47, is very low compared to 0.84 when two
motion models (See Figure 1(c)) are employed
using the parameters in the paper of Caveney
(Li and Bar-Shalom, 1993). The steady state
performance is influenced by the choice of the
Markovian transition matrix whose components
are apriori transition probabilities from one

r
|

(b) Probabilities of the three motion models with
0.95 Markovian self-transition probability

(c) Probabilities of three motion models with 0.98
Markovian self-transition probability
- 3 1

= L [reemes 1

(d) Probabilities when only two motion models used

Fig. 1 Target state estimation of a vehicle with zero
relative motion

model to another and to itself. Figure 1 shows
that if larger probabilities were employed in the
diagonal components of the Markovian transition
matrix, then higher converged values of the model
probabilities can be expected.

Equation (6) is the Markovian transition ma-
trix used in this paper.

0.95 0.025 0.025
m;;=| 0.025 0.95 0.025 (6)
0.025 0.025 0.95

The purpose of this next simulation is to ex-
amine the suitability of the proposed lateral mo-
tion model in a lane-change situation. Figure 2
(a) and (b) display a comparison between the
estimated track position and the actual preced-
ing vehicle position measurements fed to IMM-
PDAF routine. It can be seen that the estimated
longitudinal and lateral positions track the pre-
ceding vehicle well. The lateral motion of the
preceding vehicle begins at 16 sec and continues
for 15 sec. Figure 2(c) shows through the model
probabilities how the lane-change motion be-
comes the dominant motion at that time.

(a) Longitudinal position

e [ ——

..._,.

me Lo

(c) Probabilities of the three motion models

Fig. 2 Target state estimation of a vehicle perform-
ing a lane change
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Figure 3 shows the target tracking simulation
results using experimental data acquired from a
mmW radar on a middle-speed highway. Figure
3(a) and 3(b) display a comparison between the
estimated track position and raw data from the
mmW radar and they show good performance
when three models are used. Figure 3(a) shows
the longitudinal spacing between the preceding
vehicle and the subject vehicle decreasing during
the 4 sec and 9 sec mark and, subsequently, the
probability of the braking motion model increas-
ing at the same time. At about 5 sec, braking mo-
tion has become the dominant motion.

2.3 The primary target determination algo-
rithm

The information concerning estimated target
positions from the IMM-PDAF routine cannot
be fed directly to a single-target ACC algorithm
because it is only able to follow one preceding
vehicle. Thus, there is a need to determine which
preceding vehicle is the primary vehicle to be
followed. In our primary target determination
algorithm, there are two assumptions ; one is that

5
i

e Cmeanen

(c) Probabilities of three motion models
Fig. 3 Target state estimation of a rapidly braking
vehicle

the subject vehicle is in the center of the lane and
the other is that the lane width is known. This
covers the fact that the subject vehicle has no
information on the relative position of the subject
vehicle with respect to its own lane.

Generally, human drivers make the decision to
follow the closest of any vehicles currently in their
lane and any vehicles currently cutting into their
lane. Figure 4 shows the flow chart of the primary
target determination algorithm introduced here
to incorporate additional information available
from the multiple model tracking routine. This
additional information allows us to adapt our
ACC system to new primary targets in a way that
is more intelligent and more reminiscent of hu-
man driving. Firstly, if the sign on the lateral
position is opposite to that of the lateral speed, it
means that the target is approaching the lane of
the subject vehicle. When this occurs, a weighted
lateral position is employed that is only used in
this primary target decision process. This weight-
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Fig. 4 Flow chart of the primary target determina-
tion algorithm
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Fig. 5 Weighting factors enforced on the motion

model probabilities

ing function makes a rapid decision possible
while also considering the fact that the cut-in
vehicle is not yet in the subject vehicle’s lane.

The weighting factor functions, u:(z) and
w2 (us), introduced in Figure 4 are shown in
Figure 5. The gradient of the weighting factor
associated with the lane change motion model
probability, wi(ze), is steeper than that asso-
ciated with the braking motion model probabi-
lity, w2 (us), because we focus on the predomi-
nant lateral motion exhibited during most lane
changes. However, w» (), exhibits the fact that
acceleration and braking is also common during
some lane changes.

3. Simulation Results

In this section, an MTT-ACC system that in-
cludes of the above multiple model tracker and
primary target determination algorithm is tested
via simulations using actual mmW radar data.
However, the experimental radar data are related
to the speed of the vehicle used to record the
data. So, with the speed of the simulated subject
vehicle being controlled by the ACC algorithm
in a closed-loop simulation, we cannot use the
mmW radar data directly. To overcome this
drawback, we transform the raw data to a global
frame of reference before running the simula-
tions and calculate the relative measurements be-
tween surrounding vehicles and the subject vehi-
cle as the simulation progresses.

3.1 Deceleration situation

Figure 6 shows the results of a simulation
with a preceding vehicle braking. Subject and
preceding vehicle accelerations and speeds are
compared in Figure 6(a) and (b), respectively.
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(d) Brake pressure
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(f) Probability of three motion models

Fig. 6 ACC results in Deceleration Situation

It is illustrated that the subject vehicle tracks
the deceleration of the preceding vehicle closely.
Speed differences between the preceding vehicle
and the subject vehicle are caused by the control



1748

scheme which makes speed and spacing errors
simultaneously converge to zero. Therefore, brake
pressure is applied when the error between the
desired and actual spacing becomes sufficiently
small at 6 sec in Figure 6(d). The probability of
the braking motion model has the largest value
among the three motion models at 3.2 sec and
then the lane change motion becomes a dominant
motion at 6.5 sec in Figure 6(f).

3.2 Cut-in situation
Figure 7 shows vehicle trajectories plotted

& & a2 80
(=]
& A FEE

Lorpdadegi Fpahan prj
-_l-
-
L
-
W

—

Lebwrsl Frwidr{r Lafewsl ®owiierd r

(a) (b)

Fig. 7 MTT-ACC simulation results using driving
data of a cut-in situation. (a) Data tracks
from mmW radar (b) Estimated IMM-PDAF
tracks
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using real driving radar sensor data and estimat-
ed vehicle trajectories. Figure 7(a) shows a driv-
ing situation with a cut-in vehicle. The subject
vehicle moves from (Om, Om) to (Om, 270 m)
over the duration of this scenario. In this par-
ticular data run, most radar signals which have
a negative lateral position can be discarded, be-
cause there was a median strip to the left of the
center lane. The information of the cut-in vehicle
is initially transmitted from data track 2 of the
mmW radar and is later fed from data track 5
of the recorded data, beginning at 5.7 sec. Figure
7(b) shows the capabilities of the IMM-PDAF
as a target state estimator. Most radar returns
from clutter are removed and all targets, which
move around the subject vehicle, are successfully
tracked. Although the radar data of the cut-in
vehicle jumps from data track 2 to data track 5,
the estimated state of the cut-in vehicle is contin-
uously fed from Track 2 of the IMM-PDAF
routine. The preceding vehicle is in Track 1.
Figures 8 to 11 show the results of control-
ling the subject vehicle during the driving sce-
nario of Figure 7. A time-gap of 1.57 sec and a
minimum spacing of 2m are used, which are
estimated from investigating the data of the dri-
ver who was driving during this scenario.
Comparison of the longitudinal positions of
Track 1 and Track 2 are shown in Figure 8(a).
The lateral positions of Track 1 and Track 2 are
compared in Figure 8(b). As shown in Figures
8(a) and 8(b), the cut-in vehicle in the right
lane approaches the lane of the subject vehicle
at 8 seconds and completely occupies the place
in front of the subject vehicle at 11 seconds.
The model probabilities of the cut-in vehicle are
shown in Figure 8(c). The figure shows that the
braking motion model probability increases at
6 sec, and then the lane change motion model
probability rises rapidly. Most experimental data
shows this phenomenon that the lane change is
accompanied with a longitudinal acceleration or
deceleration motion. In Figure 8(d), the subject
vehicle has no target for one second because the
IMM-PDAF routine requires time for initiation
and confirmation of new target tracks. The con-
troller of the ACC system recognizes the cut-in
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vehicle as a primary target at about 8sec in
Figure 8(d). Moreover, this recognition by the
probability-based method is two seconds faster
than that of a simple method using only the lane
width and lateral position of targets.

As a result of late recognition of the cut-in
vehicle when using the simple method, the sub-
ject vehicle has a maximum vehicle speed of 70
km/h in Figure 9(a). Conversely, when using
the probability-based primary target determina-
tion algorithm, the speed of the subject vehicle
decreases starting at 8 sec and only has a maxi-
mum value of 66.7 km/h in Figure 9(b).

Furthermore, the distance between the sub-
ject and the cut-in vehicle, when the primary
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(c) Probability of three motion models (Probability-
based method)

el RSl
I |} e

,.

-l
(d) Primary target number
Fig. 8 ACC results using simple method versus
probability-based method (Lane-change sit-
uation)

target is switched using the probability-based
method at 8 sec, is around 23 m in Figure 10(b).
However, the distance in Figure 10(a) when the
primary target is switched at 10sec using the
simple method is about 17.3 m. Figure 10(a)
shows that the subsequent minimum spacing
using the simple method is 12.5m at 12.1 sec,
whereas the probability-based method results
in a minimum spacing of 17.9 m at 10.1 sec in
Figure 10(b).

The resulting control using the probability-
based method and the simple method are com-
pared in Figure 11. Figure 11(a) shows that the
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(b) Vehicle speed (Probability-based method)

Fig. 9 Vehicle speed using simple method versus
probability-based method (Lane-change sit-

uation)
; . - - , | -!
i -f 1 w2k
-
i g L~ |
(a) Spacing (Simple method)

| =
' | — | SR 1 ! ] ____ﬂ-"" okt |

[

(b) Spacing (Probability-based method)
Fig. 10 Spacing: simple method versus probabili-
ty-based method (Lane-change situation)
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(c) Throttle angle
Fig. 11 Control results : simple method versus prob-
ability-based method (Lane-change situa-

tion)

faster recognition of the cut-in vehicle makes it
possible for more comfortable driving. The ACC
controller activates the brakes earlier to avoid
a collision between the subject vehicle and the
cut-in vehicle. A brake pressure of about 33 bar
is applied at 10.5 sec in Figure 11(b).

4. Conclusions

A Multi-target tracking algorithm and its
application to an Adaptive Cruise Control sys-
tem have been presented. A multiple-model tar-
get state estimator which uses the IMM-PDAF
algorithm consists of three motion models ; uni-
form motion, lane-change motion, and braking
motion. Improvement in the target estimation
performance using three motion models has
shown through tracking simulations. A primary
target determination algorithm that uses the mo-
tion model probabilities of the IMM-PDAF
routine has been presented and the overall per-
formance of the MTT-ACC algorithm has been
investigated via closed-loop simulations using

experimental data from a mmW radar. In the
case of a cut-in situation, the primary target
determination algorithm makes the ACC system
switch primary targets earlier and subsequently
provides additional clearance for the subject ve-
hicle. Furthermore, this is a more realistic sys-
tem response that better reflects actual human
driving behavior.
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Appendix

Vehicle coordinates
Transformation from polar coordinates to Car-
tesian coordinates

Z1=7 coS 0, zz=r sin 0

Measurement errors are converted to Cartesian
coordinates

R[k]=cov[v[k]]

_E—rdl {b+c052€ sin26 ]
2 sin26 b—cos 26

p— oz + 203

02— 720}

IMM (Interacting Multiple Model)
7,7 . Motion model
7 . The number of models

Mixing
Mixing probability

ﬂijlll'[k* 1:|

railk—1]= P k—1]

Normalization factor

LE D mp k—1]
Mixed initial condition of the state estimate
RIe—1]=21 %[ b— 1] pa;[k—1]
Mixed initial condition covariance
Pilk—1] =2 (Pilk— 1]+ [&:[k—1]-%3[k—1]]
X [&lk=1]=%5Tk—1]]7) pos[e—1]

Filtering
Predicted estimate of the state vector

Rkl k—1]1=FR[k—1]+Tw;[ k—1]
Predicted covariance matrix of estimation errors
P;lk|k—1]1=F,Pil k—1]F]+ Q[ £] I

Residual
vi2z[kl—#klk—1]=z[k] —HX;[ k| k—1]
Covariance of the residual
S;lk]=H;P;[k|k—1]H] +R;[£]
Kalman filter gain
W;[k]=P;[k|k—1]H]S,[£]™
Filtered estimate of the state vector
%[kl R]=%;[ k| k—1]+W;[£]v;
Filtered covariance matrix
P;lk|k]=P;[k|k—1]—W,[£]S;[R]W,[%]"
Likelihood function
ALR) =278, L] |2 S THK
Updated model probability

;[ R] ;[ k]

Wl =5 ATk Atk

Combination
State estimate

K[k]&[k|k]=271% k| k] 1] k]

Covariance matrix associated with state estimate

PL#] 2P[k| k] = 2 (Pilk | £] + IR,k | £] —%
[l £11X Rk 1]~ LRI £117) ]

PDAF (Probabilistic Data Association Filter)
) . Validated measurement
k . Sampling time
n[k] : The number of validated measurements
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J . Motion model
Set of validated measurements
Z[ k] ={z:[ R]}EY
Cumulative set of measurements
ZF={Z[1]}m
Residual

viilk] 2z k] —2;[ k| k—1]
=z;[k]—HRX;[ k| k—1]

{z: vl k)" S[E] il k] < g%}
Volume of validation region
VIk]=g’n|S[k] "
Probabilistic data association
Biilkl2p(xilk]| Z%) i=0, 1, -, nlk]
B k=1

Biil k1= fin(z:[ k]) [b[ ] + 280 fin (2:[ £]) ]
i=1, -, nlk]

BiolkR1=b1k][b[ k] +22 fin (z:[ £]) ]!

fin(z:[R]) & (1—a) "N (v;:[ k] ; 0, S[k])

N » (aq—l—a/z o)
Kalman filter gain
W[ k] =P;[k|k—1TH"S;[ %]

State estimate for one model in an IMM
;L k| k] =208 B[ k] %i[ k| R]
=%;[ k| k=11 +W;[£]v;[ ]
Combined residual
vil k] =28 B5.: L k] vl k]

Covariance matrix associated with state estimate
for one model in an IMM

P,-[klk]*ﬂjo[ IP;[klk—=1]+[1—Bio[£]]P5L k| k]
Wil R) [ Bi L] vil k] v k]
—v[RIV[R]TIW, (k)T

State estimate
[kl k=218, k| k] [ £]
Covariance matrix associated with state estimate

Pll|k] =251 (Ps[ k| k] + [%;[ k| k] —%[ k| £]]
X [%;[kl k] —%[kl£]]T) 1 k]



